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Abstract. A simple new method for constructing solutions of multidimensional nonlinear wave
equations is proposed.

1. Introduction

The method of symmetry reduction of an equation to equations with fewer variables, in
particular, to ordinary differential equations [1–3] is among the most efficient methods for
constructing solutions of nonlinear equations in mathematical physics. This method is based
on investigation of the subgroup structure of an invariance group of a given differential
equation. Solutions being obtained in this way are invariant with respect to a subgroup of
the invariance group of the equation. It is worth noting that the invariance imposes very
severe constraints on solutions. For this reason, the symmetry reduction does not allow one
to obtain a sufficiently wide classes of solutions in many cases.

The idea of the conditional invariance of differential equations, proposed in [3–6], is
particularly interesting. By conditional symmetry of an equation, one means the symmetry
of some solution set. For a lot of the important nonlinear equations of mathematical physics,
there exist solution subsets, the symmetry of which is essentially different from that of the
whole solution set. One chooses such solution subsets, as a rule, with the help of additional
conditions representing partial differential equations. The description of these additional
conditions in the explicit form is a difficult problem and unfortunately there are no efficient
methods to solve it.

In this paper, we propose a simple method for constructing some classes of exact
solutions to the nonlinear equations of mathematical physics. We notice that the idea of
this method was formulated by Fushchych and Barannyk [7]. The essence of the method
is the following. Let we have a partial differential equation

F
(
x, u, u

1
, u

2
, . . . , u

m

) = 0 (1)

whereu = u(x), x = (x0, x1, . . . , xn) ∈ R1,n, u
m

is a collection of all possible derivatives of

orderm, and let equation (1) have a nontrivial symmetry algebra. To construct solutions of
equation (1), we use the symmetry (or conditional symmetry) ansatz [3]. Suppose that it is
of the form

u = f (x) ϕ(ω1, . . . , ωk)+ g(x) (2)
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whereω1 = ω1(x0, x1, . . . , xn), . . . , ωk = ωk(x0, x1, . . . , xn) are new independent variables.
Ansatz (2) singles out some subsetS from the whole solution set of equation (1). Construct
(if it is possible) a new ansatz

u = f (x) ϕ(ω1, . . . , ωk, ωk+1, . . . , ωl)+ g(x) (3)

which is a generalization of ansatz (2). Hereωk+1, . . . , ωl are new variables that should
be determined. We choose the variablesωk+1, . . . , ωl from the condition that the reduced
equation corresponding to ansatz (3) coincides with the reduced equation corresponding
to ansatz (2). Ansatz (3) singles out a subsetS1 of solutions to equation (1), being an
extension of the subsetS. If solutions of the subsetS are known, then one can also
construct solutions of the subsetS1. These solutions are constructed in the following way.
Let u = u(x, C1, . . . , Ct ) be a multiparameter solution set of the form (2) of equation (1),
whereC1, . . . , Ct are arbitrary constants. We shall obtain a more general solution set of
equation (1) if we take constantsCi in the solutionu = u(x, C1, . . . , Ct ) to be arbitrary
smooth functions ofωk+1, . . . , ωl .

Basic aspects of our approach are presented by the examples of d’Alembert, Liouville
and eikonal equations.

2. Nonlinear d’Alembert equations

Let us consider a nonlinear Poincaré-invariant d’Alembert equation

�u+ F(u) = 0 (4)

where

�u = ∂2u

∂x2
0

− ∂
2u

∂x2
1

− · · · − ∂
2u

∂x2
n

and F(u) is an arbitrary smooth function. References [3, 8–10] are devoted to the
construction of exact solutions to equation (4) for different restrictions on the functionF(x).
The majority of these solutions is invariant with respect to a subgroup of the invariance group
of equation (4), i.e. they are Lie solutions. One of the methods for constructing solutions
is the method of symmetry reduction of equation (4) to ordinary differential equations. The
essence of this method for equation (4) consists in the following.

Equation (4) is invariant under the Poincaré algebraAP(1, n) with the basis elements

J0a = x0∂a + xa∂0 Jab = xb∂a − xa∂b
P0 = ∂0 Pa = ∂a (a, b = 1, 2, . . . , n).

Let L be an arbitrary rankn subalgebra of the algebraAP(1, n). The subalgebraL has
two main invariantsu, ω = ω(x0, x1, . . . , xn). The ansatzu = ϕ(ω) corresponding to the
subalgebraL reduces equation (4) to the ordinary differential equation

ϕ̈(∇ω)2+ ϕ̇�ω + F(ϕ) = 0 (5)

where

(∇ω)2 ≡
(
∂ω

∂x0

)2

−
(
∂ω

∂x1

)2

− · · · −
(
∂ω

∂xn

)2

.

Such a reduction is called thesymmetry reduction, and the ansatz is called thesymmetry
ansatz. There exist eight types of nonequivalent rankn subalgebras of the algebraAP(1, n)
[8]. In table 1, we write out these subalgebras, their invariants and values of(∇ω)2, �ω
for each invariant.
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Table 1.

N Algebra Invariantω (∇ω)2 �ω

1 P1, . . . , Pn x0 1 0
2 P0, P1, . . . , Pn−1 xn −1 0

3 P1, . . . , Pn−1, J0n
(
x2

0 − x2
n

)2
1

1

ω

4 Jab (a, b = 1, . . . , k),
(
x2

1 + · · · + x2
k

)1/2 −1 − k − 1

ω
Pk+1, . . . , Pn, P0 (k > 2)

5 Ga = J0a − Jak , Jab
(
x2

0 − x2
1 − · · · − x2

k

)1/2
1

k

ω
(a, b = 1, . . . , k − 1)
J0k , Pk+1, . . . , Pn (k > 1)

6 P1, . . . , Pn−2, P0 + Pn, α ln(x0 − xn)+ xn−1 −1 0
J0n + αPn−1

7 P0 + Pn, P1, . . . , Pn−1 x0 − xn 0 0
8 Pa (a = 1, . . . , n− 2),

Gn−1 + P0 − Pn, P0 + Pn (x0 − xn)2 − 4xn−1 −1 0

The method proposed in [12] of reduction of equation (4) to ODEs is a generalization
of the symmetry reduction method. Equation (4) is reduced to ODEs with the help of the
ansatzu = ϕ(ω), whereω = ω(x) is a new variable, ifω(x) satisfies the equations

�ω = F1(ω) (∇ω)2 = F2(ω). (6)

HereF1, F2 are arbitrary smooth functions depending only onω.
Thus, if we construct all solutions to system (6), we get the set of all values of the

variableω, for which the ansatzu = ϕ(ω) reduces equation (4) to ODEs in the variableω.
References [11, 12] are devoted to the investigation of system (6).

Note, however, that ansätze obtained by solving system (6), do not exhaust the set of
all ans̈atze reducing equation (4) to ordinary differential equations. For this purpose, let us
consider the process of finding generalized ansätze (3) on the known symmetry ansätze (2)
of equation (4).

(i) Consider the symmetry ansatzu = ϕ(ω1) for equation (4), whereω1 =
(
x2

0 − x2
1 −

· · · − x2
k

)
, k > 2. The ansatz reduces equation (4) to the equation

ϕ11+ k

ω1
ϕ1+ F(ω1) = 0 (7)

whereϕ11 = d2ϕ/dω2
1, ϕ1 = dϕ/dω1. This ansatz should be regarded as a partial case

of the more general ansatzu = ϕ(ω1, ω2), whereω2 is an unknown variable. The ansatz
u = ϕ(ω1, ω2) reduces equation (4) to the equation

ϕ11+ k

ω1
ϕ1+ 2ϕ12(∇ω1 · ∇ω2)+ ϕ2�ω2+ ϕ22(∇ω2)

2+ F(ϕ) = 0 (8)

where

∇ω1 · ∇ω2 = ∂ω1

∂x0
· ∂ω2

∂x0
− ∂ω1

∂x1
· ∂ω2

∂x1
− · · · − ∂ω1

∂xn
· ∂ω2

∂xn
.

Let us impose the condition on equation (8), under which equation (8) coincides with
the reduced equation (7). Under such an assumption, equation (8) decomposes into two
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equations

ϕ11+ k

ω1
ϕ1+ F(ϕ) = 0 (9)

2ϕ12(∇ω1 · ∇ω2)+ ϕ22(∇ω2)
2+ ϕ12�ω2 = 0. (10)

Equation (10) will be fulfilled for an arbitrary functionϕ if we impose the conditions

�ω2 = 0, (∇ω2)
2 = 0 (11)

∇ω1 · ∇ω2 = 0 (12)

on the variableω2. Therefore, if we choose the variableω2 such that conditions (11) and (12)
are satisfied, then the multidimensional equation (4) is reduced to the ordinary differential
equation (7) and solutions of the latter equation give us solutions of equation (4). So, the
problem of reduction is reduced to the construction of general or partial solutions to the
system (11) and (12).

The overdetermined system (11) is studied in detail in [13, 14], where a wide class of
solutions to system (11) is constructed. These solutions are constructed in the following
way. Let us consider a linear algebraic equation in variablesx0, x1, . . . , xn with coefficients
depending on the unknownω2:

a0(ω2)x0− a1(ω2)x1− · · · − an(ω2)xn − b(ω2) = 0. (13)

Let the coefficients of this equation represent analytic functions ofω2 satisfying the condition

[a0(ω2)]
2− [a1(ω2)]

2− · · · − [an(ω2)]
2 = 0.

Suppose that equation (13) is solvable forω2 and let a solution of this equation represent
some real or complex function

ω2(x0, x1, . . . , xn). (14)

Then function (14) is a solution to system (11). Single out those solutions (14), that possess
the additional property∇ω1 · ∇ω2 = 0. It is obvious that

∂ω2

∂x0
= −a0

δ′
,

∂ω2

∂x1
= a1

δ′
, . . . ,

∂ω2

∂xn
= an

δ′

where

δ(ω2) ≡ a0(ω2)x0− a1(ω2)x1− · · · − an(ω2)xn − b(ω2)

andδ′ is the derivative ofδ with respect toω2. Since

∂ω1

∂x0
= x0

ω1
,

∂ω1

∂x1
= − x1

ω1
, . . . ,

∂ω1

∂xn
= − xn

ω1

we have

∇ω1 · ∇ω2 = − 1

ω1δ′
(a0x0− a1x1− · · · − anxn).

Hence, with regard for (13), the equality∇ω1 ·∇ω2 = 0 is fulfilled if and only if b(ω2) = 0.
Therefore, we have constructed the wide class of ansätze reducing the d’Alembert equation
to ordinary differential equations. The arbitrariness in choosing the functionω2 may be
used to satisfy some additional conditions (initial, boundary and so on).
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(ii) The symmetry ansatzu = ϕ(ω1), ω1 =
(
x2

1 + · · · + x2
l

)1/2
, 1 6 l < n − 1, is

generalized in the following way. Letω2 be an arbitrary solution to the system of equations

∂2ω

∂x2
0

− ∂2ω

∂x2
l+1

− · · · − ∂
2ω

∂x2
n

= 0(
∂ω

∂x0

)2

−
(
∂ω

∂xl+1

)2

− · · · −
(
∂ω

∂xn

)2

= 0.

(15)

The ansatzu = ϕ(ω1, ω2) reduces equation (4) to the equation

−d2ϕ

dω2
1

− k − 1

ω1

dϕ

dω1
+ F(ϕ) = 0.

If l = n−1, then the ansatzu = ϕ(ω1, ω2), ω2 = x0−xn is a generalization of the symmetry
ansatzu = ϕ(ω1).

Ansätze corresponding to subalgebras 2, 6 and 8 in table 1, are particular cases of the
ansatz constructed above. In a similar way, one can obtain wide classes of ansätze reducing
equation (4) to two-, three-dimensional and so on equations. Let us present some of them.

(iii) The ansatzu = ϕ(ω1, . . . , ωl, ωl+1), whereω1 = x1, . . . , ωl = xl , ωl+1 is an
arbitrary solution of system (15),l 6 n − 1, is a generalization of the symmetry ansatz
u = ϕ(ω1, . . . , ωl) and reduces equation (4) to the equation

− ∂
2ϕ

∂ω2
1

− ∂
2ϕ

∂ω2
2

− · · · − ∂
2ϕ

∂ω2
l

+ F(ϕ) = 0.

(iv) The ansatzu = ϕ(ω1, . . . , ωs, ωs+1), where ω1 =
(
x2

0 − x2
1 − · · · − x2

l

)1/2
,

ω2 = xl+1, . . . , ωs = xl+s−1, l > 2, l + s − 1 6 n, ωs+1 is an arbitrary solution of the
system

�ωs+1 = 0 (∇ωs+1)
2 = 0 ∇ωi · ∇ωs+1 = 0 i = 1, 2, . . . , s (16)

is a generalization of the symmetry ansatzu = ϕ(ω1, . . . , ωs) and reduces equation (4) to
the equation

ϕ11− l

ω1
ϕ1− ϕ22− · · · − ϕss + F(ϕ) = 0.

Let us construct in the way described above some classes of exact solutions of the
equation

�u+ λuk = 0 k 6= 1. (17)

The following solution of equation (17) is obtained in [10]:

u1−k = σ(k, l)(x2
1 + · · · + x2

l

)
(18)

where

σ(k, l) = λ(1− k)2
2(l − lk + 2k)

l = 1, 2, . . . , n.

Solution (18) defines a multiparameter solution set

u1−k = σ(k, l)[(x1+ C1)
2+ · · · + (xl + Cl)2

]
whereC1, . . . , Cl are arbitrary constants. Hence, according to (iii), we obtain the following
set of solutions to equation (17) forl 6 n− 1:

u1−k = σ(k, l)[(x1+ h1(ω))
2+ · · · + (xl + hl(ω))2

]
k 6= l

l − 2
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whereω is an arbitrary solution of system (15) andh1(ω), . . . , hl(ω) are arbitrary twice
differentiable functions ofω. In particular, ifn = 3 andl = 1, then equation (17) possesses
in the spaceR1,3 the solution set

u1−k = λ(1− k)2
2(1+ k) [x1+ h1(ω)]

2 k 6= −1.

Next, let us consider the following solution of equation (4) [10]:

u1−k = σ(k, s)(x2
0 − x2

1 − · · · − x2
s

)
s = 2, . . . , n (19)

where

σ(k, s) = − λ(1− k)2
2(s − ks + k + 1)

k 6= s + 1

s − 1
.

Solution (19) defines the multiparameter solution set

u1−k = σ(k, s)[x2
0 − x2

1 − · · · − x2
l − (xl+1+ Cl+1)

2− · · · − (xs + Cs)2
]

whereCl+1, . . . , Cs are arbitrary constants. According to (iv) we obtain the following
solution set forl > 2:

u1−k = σ(k, s)[x2
0 − x2

1 − · · · − x2
l − (xl+1+ hl+1(ω))

2− · · · − (xs + hs(ω))2
]

whereω is an arbitrary solution of system (16), andhl+1(ω), . . . , hs(ω) are arbitrary twice
differentiable functions. In particular, ifl = 2 ands = 3, then equation (4) possesses in the
spaceR1,3 the following solution set:

u1−k = λ(1− k)2
4(k − 2)

[
x2

0 − x2
1 − x2

2 − (x3− h3(ω))
2
]

k 6= 2.

The equation

�u+ 6u2 = 0 (20)

possesses the solutionu = P(x3+C2), whereP(x3+C2) is an elliptic Weierstrass function
with the invariantsg2 = 0 andg3 = C1. Therefore, according to (iii) we get the following
set of solutions of equation (20):

u = P(x3+ h(ω))
whereω is an arbitrary solution to system (15) andh(ω) is an arbitrary twice differentiable
function ofω.

Next consider the Liouville equation

�u+ λ expu = 0. (21)

The symmetry ansatzu = ϕ(ω1), ω1 = x3, reduces equation (21) to the equation

d2ϕ

dω2
1

= λ expϕ(ω1).

Integrating this equation, we obtain thatϕ coincides with one of the following functions:

ln

{(
−C1

2λ
sec2

[√−C1

2
(ω1+ C2)

])}
(C1 < 0, λ > 0, C2 ∈ R)

ln

{
2C1C2 exp

(√
C1ω1

)
λ
[
1− C2 exp

(√
C1ω1

)]2

}
(C1 > 0, λC2 > 0)

− ln

(√
λ

2
ω1+ C

)2

.
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Hence, according to (iii) we get the following solution set for equation (21):

u = ln

{(
−h1(ω)

2λ
sec2

[√−h1(ω)

2
(ω1+ h2(ω))

])}
(h1(ω) < 0, λ > 0)

u = ln

{
2h1(ω)h2(ω) exp

(√
h1(ω)ω1

)
λ
[
1− h2(ω) exp

(√
h1(ω)ω1

)]2

}
(h1(ω) > 0, λh2(ω) > 0)

u = − ln

(√
λ

2
ω1+ h(ω)

)2

where h1(ω), h2(ω), h(ω) are arbitrary twice differentiable functions;ω is an arbitrary
solution to system (15).

Using, for example, the solution to the Liouville equation (21) [10]

u = ln
2(s − 2)

λ
[
x2

0 − x2
1 − · · · − x2

s

] s 6= 2

we obtain the wide class of solutions to the Liouville equation

u = ln
2(s − 2)

λ
[
x2

0 − x2
1 − · · · − x2

l − (xl+1+ hl+1(ω))2− · · · − (xs + hs(ω))2
]

whereω is an arbitrary solution to system (16), andhl+1(ω), . . . , hs(ω) are arbitrary twice
differentiable functions. Ifs = 3, then equation (21) possesses in the spaceR1,3 the
following solution set:

u = ln
2

λ
[
x2

0 − x2
1 − x2

2 − (x3+ h3(ω))2
] .

Let us consider now the sine–Gordon equation

�u+ sinu = 0.

In an analogous way, we get the following solutions:

u = 4 arctanh1(ω) eε0x3 − 1
2(1− ε)π ε0 = ±1 ε = ±1

u = 2 arccos[dn(x3+ h1(ω)),m] + 1
2(1+ ε)π 0< m < 1

u = 2 arccos

[
cn

(
x3+ h1(ω)

m

)
, m

]
+ 1

2(1+ ε)π 0< m < 1

whereh1(ω) is an arbitrary twice differentiable function,ω is an arbitrary solution to system
(15).

3. Eikonal equation

Consider the eikonal equation(
∂u

∂x0

)2

−
(
∂u

∂x1

)2

−
(
∂u

∂x2

)2

−
(
∂u

∂x3

)2

= 1. (22)

The symmetry ansatzu = ϕ(ω1), ω1 = x2
0 − x2

1 − x2
2 − x2

3, reduces equation (22) to the
equation

4ω1

(
∂ϕ

∂ω1

)2

− 1= 0. (23)
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We shall look for a generalized ansatz in the formu = ϕ(ω1, ω2). This ansatz reduces
equation (22) to the equation

4ω1

(
∂ϕ

∂ω1

)2

+ 2(∇ω1 · ∇ω2)
∂ϕ

∂ω1
+ (∇ω2)

2

(
∂ϕ

∂ω2

)2

= 1. (24)

Impose the condition on equation (24), under which equation (24) coincides with
equation (23). It is obvious that this condition will be fulfilled if we impose the conditions

(∇ω2)
2 = 0 ∇ω1 · ∇ω2 = 0 (25)

on the variableω2. Having solved system (25), we get the explicit form of the variableω2.
It is easy to see that an arbitrary function of a solution to system (25) is also a solution to
this system.

Having integrated equation (23), we obtain(u+ C)2 = x2
0 − x2

1 − x2
2 − x2

3, whereC is
an arbitrary constant. We shall obtain a more general solution set for the eikonal equation
if we takeC to be an arbitrary solution to system (25).

The symmetry ansatzu = ϕ(ω1, ω2), ω1 = x2
0 − x2

1 − x2
2, ω2 = x3 can be generalized

in the following way. Letω3 be an arbitrary solution to the system of equations(
∂ω3

∂x0

)2

−
(
∂ω3

∂x1

)2

−
(
∂ω3

∂x2

)2

= 0

x0
∂ω3

∂x0
+ x1

∂ω3

∂x1
+ x3

∂ω3

∂x2
= 0.

(26)

Then the ansatzu = ϕ(ω1, ω2, ω3) reduces the eikonal equation to the equation

4ω1

(
∂ϕ

∂ω1

)2

−
(
∂ϕ

∂ω2

)2

− 1= 0. (27)

Equation (27) possesses the solution [10]

ϕ = C2
1 + 1

2C1

(
x2

0 − x2
1 − x2

2

)1/2+ C
2
1 − 1

2C1
x3+ C2

(ϕ + C2)
2 = x2

0 − x2
1 − x2

2 − (x3+ C1)
2

that can be easily found by using the symmetry reduction method of equation (27) to an
ordinary differential equation. Having replaced arbitrary constantsC1 andC2 by arbitrary
functionsh1(ω) andh2(ω), we get the more wide classes of exact solutions to the eikonal
equation:

u = h1(ω3)
2+ 1

2h1(ω3)

(
x2

0 − x2
1 − x2

2

)1/2+ h1(ω3)
2− 1

2h1(ω3)
x3+ h2(ω3)

(u+ h2(ω3))
2 = x2

0 − x2
1 − x2

2 − (x3+ h1(ω3))
2.

Let us note, since the Born–Infeld equation is a differential consequence of the eikonal
equation [3], we also constructed wide classes of exact solutions of the Born–Infeld equation.
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