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Abstract. A simple new method for constructing solutions of multidimensional nonlinear wave
equations is proposed.

1. Introduction

The method of symmetry reduction of an equation to equations with fewer variables, in
particular, to ordinary differential equations [1-3] is among the most efficient methods for
constructing solutions of nonlinear equations in mathematical physics. This method is based
on investigation of the subgroup structure of an invariance group of a given differential
equation. Solutions being obtained in this way are invariant with respect to a subgroup of
the invariance group of the equation. It is worth noting that the invariance imposes very
severe constraints on solutions. For this reason, the symmetry reduction does not allow one
to obtain a sufficiently wide classes of solutions in many cases.

The idea of the conditional invariance of differential equations, proposed in [3-6], is
particularly interesting. By conditional symmetry of an equation, one means the symmetry
of some solution set. For a lot of the important nonlinear equations of mathematical physics,
there exist solution subsets, the symmetry of which is essentially different from that of the
whole solution set. One chooses such solution subsets, as a rule, with the help of additional
conditions representing partial differential equations. The description of these additional
conditions in the explicit form is a difficult problem and unfortunately there are no efficient
methods to solve it.

In this paper, we propose a simple method for constructing some classes of exact
solutions to the nonlinear equations of mathematical physics. We notice that the idea of
this method was formulated by Fushchych and Barannyk [7]. The essence of the method
is the following. Let we have a partial differential equation

F(x,u,th,th,...,u)zo 1)

m
whereu = u(x), x = (xo, x1, ..., X,) € Ry ,, u is a collection of all possible derivatives of

orderm, and let equation (1) have a nontrivial symmetry algebra. To construct solutions of
equation (1), we use the symmetry (or conditional symmetry) ansatz [3]. Suppose that it is
of the form

u=fx)e(wy, ..., o) +gx) 2

0305-4470/98/214899+09$19.5@C) 1998 IOP Publishing Ltd 4899



4900 A F Barannyk ad | | Yuryk

wherew; = wi(xo, X1, - - -, Xp), - - . , W = wi(xo, X1, . .., X,) are new independent variables.
Ansatz (2) singles out some subsefrom the whole solution set of equation (1). Construct
(if it is possible) a new ansatz

u=f(x)p(w, ..., o1, ..., o) +gx) 3)
which is a generalization of ansatz (2). Hesg 4, ..., w; are new variables that should
be determined. We choose the variahigs;, ..., ; from the condition that the reduced

equation corresponding to ansatz (3) coincides with the reduced equation corresponding
to ansatz (2). Ansatz (3) singles out a subSgtof solutions to equation (1), being an
extension of the subsef. If solutions of the subsef§ are known, then one can also
construct solutions of the subsg&t. These solutions are constructed in the following way.
Letu = u(x, Cq, ..., C,) be a multiparameter solution set of the form (2) of equation (1),
whereCy, ..., C, are arbitrary constants. We shall obtain a more general solution set of
equation (1) if we take constant in the solutionu = u(x, C4, ..., C,) to be arbitrary
smooth functions ofv1, ..., o;.

Basic aspects of our approach are presented by the examples of d’Alembert, Liouville
and eikonal equations.

2. Nonlinear d’Alembert equations

Let us consider a nonlinear Poinéanvariant d’Alembert equation

Ou+ F(u) =0 (4)
where
92 92 92
Ou = _”; _ _‘; ..... ou
ax§  Ox3 9x?

and F(u) is an arbitrary smooth function. References [3, 8-10] are devoted to the
construction of exact solutions to equation (4) for different restrictions on the fun&iion
The majority of these solutions is invariant with respect to a subgroup of the invariance group
of equation (4), i.e. they are Lie solutions. One of the methods for constructing solutions
is the method of symmetry reduction of equation (4) to ordinary differential equations. The
essence of this method for equation (4) consists in the following.

Equation (4) is invariant under the PoineaalgebraA P (1, n) with the basis elements

Joa = x00a + x40 Jap = Xp04 — X40p
Py = 9o P, =0, (a,b=1,2,...,n).
Let L be an arbitrary rank subalgebra of the algebr&P (1, n). The subalgebrd has

two main invariantsy, o = w(xo, x1, ..., x,). The ansata = ¢(w) corresponding to the
subalgebra. reduces equation (4) to the ordinary differential equation

P(Vw)? + ¢Ow + F(p) =0 (5)
where

2 dw \? dow \? o \?
Vo)o=—) - (—) == )
0x0 0x1 0x,
Such a reduction is called treymmetry reductignand the ansatz is called tlymmetry
ansatz There exist eight types of nonequivalent rankubalgebras of the algebraP (1, n)

[8]. In table 1, we write out these subalgebras, their invariants and valu€g«f, Do
for each invariant.
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Table 1.
N  Algebra Invarianto (Vo)2 O
1 Py, ..., P, X0 1 0
PO: Pl ----- P”,]_ Xn -1 (;-
2
P, ..., Pu_1, Jou (x2 - x2) 1 >
k—1
4 Jy @b=1,..., k), (244222 -1 ——
Piy1,..., Py, Py (k=2
1/2 k
5 Ga:JOa_jukaab (Xg_xf_"'_xlg)/ 1 ;
(a,b=1,..., k—1)
Joks Pr+as .-, P, (k>1)
6 Pi,..., Py_2, Po+ Py, aln(xo—x,) +x,-1 -1 0
JOn + O[Pn,]_
7 Po+ Py, Pq,..., P,_1 X0 — Xn 0 0
8 P, (a=1,..., n—2),
Gu-1+ Po— Py, Po+ Py (x0 — xn)2 — 4xy_1 -1 0

The method proposed in [12] of reduction of equation (4) to ODEs is a generalization
of the symmetry reduction method. Equation (4) is reduced to ODEs with the help of the
ansatzu = ¢(w), wherew = w(x) is a new variable, ifo(x) satisfies the equations

Ow = Fi(w) (Vo)? = F(). (6)

Here F,, F, are arbitrary smooth functions depending only«n

Thus, if we construct all solutions to system (6), we get the set of all values of the
variablew, for which the ansatz = ¢(w) reduces equation (4) to ODEs in the variable
References [11, 12] are devoted to the investigation of system (6).

Note, however, that aéfze obtained by solving system (6), do not exhaust the set of
all ansatze reducing equation (4) to ordinary differential equations. For this purpose, let us
consider the process of finding generalizedadrs (3) on the known symmetry &tze (2)
of equation (4).

(i) Consider the symmetry ansatz= ¢(w;) for equation (4), where»; = (x3 — x? —

s — x,?) k > 2. The ansatz reduces equation (4) to the equation

k
o1+ —¢14+ F(w1) =0 (7)
w1

where p1; = d?p/dw?, g1 = dp/dw;. This ansatz should be regarded as a partial case
of the more general ansaiz= ¢(w;, w2), Wherew, is an unknown variable. The ansatz
u = ¢(w1, wp) reduces equation (4) to the equation

k
P11+ ! + 2012(Var - V) + g20wz + ¢22(Va)® + F(p) = 0 (8)
1
where
8&)1 86()2 3(1)1 86()2 86{)1 86()2
Va):LVa)Z_ @ —_— e e = .
dxg dxg 0x1 dxg 0x, 0x,

Let us impose the condition on equation (8), under which equation (8) coincides with
the reduced equation (7). Under such an assumption, equation (8) decomposes into two
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equations

k
puut —e1+ Flp) =0 )
w1
2012(Vor - Vo) + ¢22(Vwr)® + 120w, = 0. (10)
Equation (10) will be fulfilled for an arbitrary functiop if we impose the conditions
Ow, = 0, (Vwy)?> =0 (11)
Vwi - Vw, =0 (12)
on the variablev,. Therefore, if we choose the varialade such that conditions (11) and (12)
are satisfied, then the multidimensional equation (4) is reduced to the ordinary differential
equation (7) and solutions of the latter equation give us solutions of equation (4). So, the
problem of reduction is reduced to the construction of general or partial solutions to the
system (11) and (12).
The overdetermined system (11) is studied in detail in [13, 14], where a wide class of
solutions to system (11) is constructed. These solutions are constructed in the following

way. Let us consider a linear algebraic equation in variakjess, . . ., x,, with coefficients
depending on the unknowm;:

ag(wz)xo — ar(wz)x1 — - - — ay(@2)x, — b(wz) = 0. (13)
Let the coefficients of this equation represent analytic functions afatisfying the condition
[ao(@2)]? = [a1(@2)]? = - -+ — [an(@2)]* = O.

Suppose that equation (13) is solvable &grand let a solution of this equation represent
some real or complex function

0)2()(0, X1y eens -xn) (14)

Then function (14) is a solution to system (11). Single out those solutions (14), that possess
the additional propertWw; - Vw, = 0. It is obvious that

dwy _ap dwy a1 dwr _ay
axo & ax1 & T dx, &
where
8(w2) = ag(w2)xo — ar(wz)x1 — - - - — a,(W2)x, — b(wz)

andd’ is the derivative of§ with respect taw,. Since

dw1  Xo dwy X1 dw1 Xn
8)60 o cz)]_7 Bxl o (,e)l’ B ax,, a w1
we have
Vw1 - Vwy = ———(apxg — a1x1 — - -+ — ayXy).
a)16’

Hence, with regard for (13), the equal¥%w; - Vw, = 0 is fulfilled if and only if b(w;) = 0.
Therefore, we have constructed the wide class oftmesreducing the d’Alembert equation
to ordinary differential equations. The arbitrariness in choosing the funetjomay be
used to satisfy some additional conditions (initial, boundary and so on).
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(i) The symmetry ansatz = ¢(w1), w1 = (x? 4+ - + x,z)l/z, 1<l <n-1,is

generalized in the following way. Let, be an arbitrary solution to the system of equations
%w 2w 3w

g af,  axf 15

do \? do \? o\ _
dxg 0X/4+1 0x, B
The ansatz = ¢ (w1, wp) reduces equation (4) to the equation

d?¢ k—1dgp
——— - ————+ F(p) =0.
do? w1 oy @

If I =n—1, then the ansatz = ¢ (w1, w2), w2 = xo—x, IS a generalization of the symmetry
ansatzu = ¢(w1).

Ansatze corresponding to subalgebras 2, 6 and 8 in table 1, are particular cases of the
ansatz constructed above. In a similar way, one can obtain wide classe&zearesiucing
equation (4) to two-, three-dimensional and so on equations. Let us present some of them.

(i) The ansatzu = ¢(ws, ..., w;, w1), Wherew; = x1,...,0;, = x;, w41 IS @n
arbitrary solution of system (15}, < n — 1, is a generalization of the symmetry ansatz
u=¢(ws,...,w) and reduces equation (4) to the equation

32 2 8%
R Sy R
dw] dw; dw

(iv) The ansatzu = @(wi,..., 0, w541), Wherew; = (x5 — x% — -+ ,21/2
W2 = Xj41,...,05 = Xj45-1, 1 = 2,1 +5 —1 < n, w1 IS an arbitrary solutlon of the
system
w1 =0 (Vay41)? =0 Vw; - Vg =0 i=12...,s (16)
is a generalization of the symmetry ansatz ¢(wy, ..., w;) and reduces equation (4) to

the equation

1
Q11— —Q1— Q22— — Qs + Fp) =
w1

Let us construct in the way described above some classes of exact solutions of the
equation

Ou + k=0 k#1. (17)
The following solution of equation (17) is obtained in [10]:
ut* = ok, 1) (xf 4+ 4 xlz) (18)
where
A1 — k)2
k)= ————— [=12,...,n.
kD= o k20 el

Solution (18) defines a multiparameter solution set

u ™ = ok, D[(x1+ CO*+ - + (y + C)?]
whereCy, ..., C; are arbitrary constants. Hence, according to (iii), we obtain the following
set of solutions to equation (17) for< n — 1:

W = ok, D[+ hi(@)?+ -+ @+ h@)?] k# l_#z
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wherew is an arbitrary solution of system (15) ahd(w), ..., h;(w) are arbitrary twice
differentiable functions of». In particular, ifn = 3 andl = 1, then equation (17) possesses
in the spaceR; 3 the solution set

. A(d=k)?
1-k 2
= - h k _1.
2145 [x1 + h1(w)] a
Next, let us consider the following solution of equation (4) [10]:
ulfk=o(k,s)(xg—xf—-~-—xsz) s=2,...,n (19)
where
M1 — k)2 s+1
k,s)=— k .
k) = ks kD) 7 o1
Solution (19) defines the multiparameter solution set
W = ok, )G —xf = = xf = (i + Cry)® = -+ = (x5 + €))7
where Cj41, ..., C, are arbitrary constants. According to (iv) we obtain the following
solution set forl > 2:
Wt = ok, 9§ —xf = = xf = a1+ (@) = - = (g + by (@)?]
wherew is an arbitrary solution of system (16), ahd 1(w), ..., h;(w) are arbitrary twice

differentiable functions. In particular, if= 2 ands = 3, then equation (4) possesses in the
spaceR; 3 the following solution set:
v M1—k)?
-k _ m[xg—xf—xg—(xg—hg(w))z] k # 2.
The equation
Ou +6u?=0 (20)

possesses the solutian= P (x3+ C2), whereP(x3+ C>) is an elliptic Weierstrass function
with the invariantsg, = 0 andgz = C;. Therefore, according to (iii) we get the following
set of solutions of equation (20):

u =Pxz+ h(w))

wherew is an arbitrary solution to system (15) ahdv) is an arbitrary twice differentiable
function of w.
Next consider the Liouville equation

Ou + A expu = 0. (21)

The symmetry ansatz = ¢(w1), w1 = x3, reduces equation (21) to the equation
d2<p A expo(wr)
— = w1).
dw? Peleon

Integrating this equation, we obtain thatcoincides with one of the following functions:

In{(—%se@[ _Cl(w1+Cz)D} (C1<0,4>0 CeR)

2
In { 2C.1C>» exp(\/C_la)l)
A[1— Coexp(y/Cro1)]

2
—|I"I< —a)1+C) .

2} (C1>0, )\-C2>O)

=
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Hence, according to (iii) we get the following solution set for equation (21):

- K— hlz(;”) sed [—V_Z“"”(wl + hM))D} (@) < 0. % > 0)

. { 2h1(@)ha(w) exp(vAr(@)wr)
A1 — ha(w) exp(vVin(@)wr) |

2
u=-—In (@wl + h(a)))

where hi(w), ho(w), h(w) are arbitrary twice differentiable functiongy is an arbitrary
solution to system (15).

Using, for example, the solution to the Liouville equation (21) [10]
2(s — 2)

Axg —x2— - —x2]

} (h1(w) > 0, Aho(w) > 0)

u=1In

s # 2

we obtain the wide class of solutions to the Liouville equation
2(s — 2)
Mg —x2— - = xf = (g1 + hiya(@)2 — - — (x4 h(@))7]

wherew is an arbitrary solution to system (16), ahd 1(w), ..., hy(w) are arbitrary twice
differentiable functions. Ifs = 3, then equation (21) possesses in the sp&ge the
following solution set:

2
A[x8 — x2 — x2 — (x3 + h3(@))?]

Let us consider now the sine—Gordon equation

u=In

Ou + sinu = 0.

In an analogous way, we get the following solutions:
u = 4arctam (o) € — 3(1— &) go=1+1 =41
u = 2arccos[diirs + hy(w)), m] + (1 + &)m O<m<1

h
u=2arcco{cn<M),m}+%(l+e)n O<m<1
m

whereh;(w) is an arbitrary twice differentiable functiom, is an arbitrary solution to system
(15).

3. Eikonal equation

Consider the eikonal equation

() - (5 - (Ge) - () == @

The symmetry ansatz = ¢(w1), @1 = x5 — x2 — x5 — x3, reduces equation (22) to the

equation
9 2
4w1(a—‘”> —1=o0 (23)

w1
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We shall look for a generalized ansatz in the fosm= ¢(w;, w2). This ansatz reduces
equation (22) to the equation
3o \° 9 3o \°
by 22 42V - Vo) 2 + (Va2 Z£-) =1 (24)
dwq dw1 dwy
Impose the condition on equation (24), under which equation (24) coincides with
equation (23). It is obvious that this condition will be fulfilled if we impose the conditions

(Van)> =0 Vi -V, =0 (25)

on the variablev,. Having solved system (25), we get the explicit form of the varialle
It is easy to see that an arbitrary function of a solution to system (25) is also a solution to
this system.

Having integrated equation (23), we obtd&in+ C)2 = x2 — x2 — x3 — x3, whereC is
an arbitrary constant. We shall obtain a more general solution set for the eikonal equation
if we take C to be an arbitrary solution to system (25).

The symmetry ansatz = ¢(w1, @2), w1 = x5 — x? — x2, wp = x3 can be generalized
in the following way. Letws be an arbitrary solution to the system of equations

(%@f_<%§f_<%§f_o
8)60 8)(1 3)(2 a (26)

3603 3&)3 8603
et} - = _0
o on tx axl + 8x2
Then the ansatz = ¢ (w1, wy, w3) reduces the eikonal equation to the equation
30\ [ e\
don(Z2) —(22) —1=0. 27)
dwy dwy
Equation (27) possesses the solution [10]
C2 +1 1/2 C2 -1
Q= ;Cl (xg—xf—xg) + ;Cl x3+C2

(<p+C2)2 :xg—xf —x22— (x3+ C1)?

that can be easily found by using the symmetry reduction method of equation (27) to an
ordinary differential equation. Having replaced arbitrary const@htand C, by arbitrary
functionshi(w) andh,(w), we get the more wide classes of exact solutions to the eikonal
equation:

h 241 h 21
_ M(ws)” + (2 —x2— xg)l/z 1(w3)
2h1(w3) 2hy(w3)
(u + ho(@3))? = x§ — xf — x5 — (x3 + ha(03))®.
Let us note, since the Born—Infeld equation is a differential consequence of the eikonal
equation [3], we also constructed wide classes of exact solutions of the Born—Infeld equation.

x3 + ho(w3)
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